Chapter two Motion kinematics

Displacement, Velocity, Time and Acceleration

Motion kinematics Two - Dimensional Motion Lecture fourth

Motion kinematics

\square Position vector and displacement vector
\square Average velocity and Instantaneous velocity
-The Average and Instantaneous Acceleration
-One -dimensional
\square Free fall
\square Motion in two dimensions
\square Projectile motion

The Kinematics of a particle Moving in Two Dimensions

The Kinematics of a particle Moving in Two Dimensions

$$
\Delta r=\Delta x+\Delta y
$$

Magnitude

$$
|\Delta r|=\sqrt{\Delta x^{2}+\Delta y^{2}}
$$

Motion in Two Dimensions

$$
\begin{aligned}
& \text { درسنا في الفصل السـابق الحركة في بعد واحد اي عندما يتحرك الجسسم في خط مستقيم على محور Xاو او ان يسقط }
\end{aligned}
$$

Motion in two dimensions like the motion of projectiles and satellites and the motion of charged particles in electric fields. Here we shall treat the motion in plane with constant acceleration.
In order to study motion in two dimensions, we need to use the concepts of vectors.
Position, velocity, and acceleration in two dimensions are determined by not only specifying their magnitude ,but also their direction.

Displacement vector in 2D

Assume that the magnitude and direction of acceleration remain unchanged during the motion.
The position vector for particle moving in two dimensions (x y plane) can be written as

$$
r=x_{i}+y_{j}
$$

Where x, y and r change with time as the particle moves The displacement vector $\Delta \vec{r}$ for a particle

$$
\Delta \vec{r}=r_{f}-r_{i}
$$

$$
\text { الزمن } t_{1} \text { ويحدد المتجهة } 2{ }_{2} \vec{r}_{2}
$$

The Velocity Vector in 2D

The direction of the instantaneous velocity \vec{v} of a particle is tangent to the path at the particles position.
The velocity of the particle as function
Of time is given by :

$$
\vec{v}=\frac{d \vec{r}}{d t}=\frac{d x}{d t} \mathrm{i}+\frac{d y}{d t} \mathrm{j} \quad \vec{v}=v_{x} \mathrm{i}+v_{y} \mathrm{j}
$$

We define the average velocity $\overrightarrow{v_{a v g}}$ of particle during the time interval Δt as the displacement of the particle divided by the time interval:

$$
\overrightarrow{v_{a v g}}=\frac{\Delta \vec{r}}{\Delta t}
$$

Because displacement is a vector quantity and the time interval is a positive scalar quantity , We conclude that the average velocity is a vector quantity directed along $\overrightarrow{\Delta r}$.

The Acceleration Vector in 2D

As a particle moves from one point to
Another along some path, its instantaneous
Velocity vector changes from $\overrightarrow{v_{i}}$ at time t_{i} to $\overrightarrow{v_{f}}$ at time t_{f}. Knowing the velocity at these points allow Us to determine the average acceleration of the particle.

The average acceleration $\overrightarrow{a_{a v g}}$ of a particle is defined As the change in its instantaneous velocity vector $\Delta \vec{v}$ Divided by the time interval Δt during which that change occurs.

$$
\overrightarrow{v_{a v g}}=\frac{\Delta \vec{v}}{\Delta t}=\frac{\overrightarrow{v_{f}}-\overrightarrow{v_{i}}}{t_{f}-t_{i}}
$$

The acceleration of the particle as a function of time is given by

$$
\vec{a}=\frac{d \vec{v}}{d t}=\frac{d v_{x}}{d t} \mathrm{i}+\frac{d v_{y}}{d t} \mathrm{j}
$$

$$
\vec{a}=a_{x} \mathrm{i}+a_{y} \mathrm{j}
$$

One Dimension

Position: x

Displacement: Δx

Velocity : displacement per unit time .sign is equal to the sign of the displacement Δx.

Acceleration :change in velocity Δv per unit time .sign is equal to
The sign of the velocity deference Δv.

Two Dimension

Position vector: r

Displacement vector : Δr

Velocity vector: change in the position vector per unit time. The direction is equal to the direction of displacement vector Δr.

Acceleration vector :change in velocity vector per unit time. The direction is equal to the direction of the velocity deference vector Δv.

Motion in Two Dimensions

The motion in two dimensions can be modeled as two independent motions in each of the two perpendicular directions associated with the x and y axes. That is ,any influence in direction does not affect the motion in the x direction and vice versa.

$$
\begin{aligned}
& \text { عنـد التعامل مع مسـائل الحركة في } \\
& \text { بعدين علينا ان نتعامل مع مركبات } \\
& \text { الحركة كالا على حدا }
\end{aligned}
$$

Motion in Two Dimensions

Velocity in two Dimensions

$v_{x}=v \cos \theta$
$v_{y}=v \sin \theta$
$|v|=\sqrt{v_{x}^{2}+v_{y}^{2}}$
$\tan \theta=\frac{v_{y}}{v_{x}}$

Acceleration in Two Dimensions

$$
\begin{aligned}
& a_{x}=a \cos \theta \\
& a_{y}=a \sin \theta
\end{aligned}
$$

$$
|a|=\sqrt{a_{x}^{2}+a_{y}^{2}}
$$

$$
\tan \theta=\frac{a_{y}}{a_{x}}
$$

kinematics Equations With Constant Acceleration

\square Constant acceleration.
\square Constant acceleration equations hold in each dimension

$$
\begin{array}{cc}
v_{x}=v_{0 x}+a_{x} t & v_{y}=v_{0 y}+a_{y} t \\
x-x_{0}=v_{0 x} t+\frac{1}{2} a_{x} t^{2} & y-y_{0}=v_{0 y} t+\frac{1}{2} a_{y} t^{2} \\
v_{x}^{2}=v_{0 . x}^{2}+2 a_{x}\left(x-x_{0}\right) & v_{y}^{2}=v_{0 y}^{2}+2 a_{y}\left(y-y_{0}\right)
\end{array}
$$

Example(1)

A ball is projected horizontally with a velocity v_{0} of magnitude $5 \mathrm{~m} / \mathrm{s}$.Find its position and velocity after $0.25 s$.

Solution

The initial angle is 0 .The initial vertical velocity component is therefore 0 .
The horizontal velocity component equal the initial velocity and is constant.

$$
\begin{aligned}
& x=v_{0} \mathrm{t}=5 \times 0.25=1.25 \mathrm{~m} \\
& y=-\frac{1}{2} \mathrm{~g} \mathrm{t}^{2}=-0.306 \mathrm{~m}
\end{aligned}
$$

The distance of the projectile is given by $\quad r=\sqrt{x^{2}+y^{2}}=1.29 \mathrm{~m}$
The component of velocity are

$$
v_{x}=v_{0 x}+a_{x} t \longrightarrow v_{x}=v_{0}=5 \mathrm{~m} / \mathrm{s}
$$

$$
v_{y}=v_{0 y}+a_{y} t \Longrightarrow v_{y}=-g t=-2.45 \mathrm{~m} / \mathrm{s}
$$

The resultant velocity is given by $\quad v=\sqrt{v_{x}{ }^{2}+v_{y}{ }^{2}}=5.57 \mathrm{~m} / \mathrm{s}$
The angle θ is given

$$
\theta=\tan ^{-1}\left(\frac{-2.45)}{5}\right)=-26.1^{\circ}
$$

Example(2)

Particle moves in the $\mathrm{x} y$ plane, starting from the origin at $t=0$ with an initial velocity having an x-component of $20 \mathrm{~m} / \mathrm{s}$ and a y-component of
$-15 \mathrm{~m} / \mathrm{s}$.The particle experiences an acceleration in the x direction, given by $a_{x}=4.0 \mathrm{~m} / \mathrm{s}^{2}$.
A) Determine the total velocity vector at any time.
B) Calculate the velocity and speed of the particle at $t=5.0 \mathrm{~s}$ and the angle the velocity vector makes with the x axis.

Solution

A)

نالاحظ من مركبات السرعة الابتدائية ان الجسم يتحرك في بعدين بحيث ان المركبة Xللسرعة تـأثر بحجلة ثابتة مع الزمن , في حين ان المركبة Yتبقى ثابتة مع الزمن لعدم وت الات المود تعجيل في هدا الآتجاه .
نالاحظ من الشكلل الموضح ان متجهه السرعة يزداد مع الزمن.

$$
v_{x i}=20 \mathrm{~m} / \mathrm{s} \quad v_{y i}=-15 \mathrm{~m} / \mathrm{s} \quad a_{x}=4 \mathrm{~m} / \mathrm{s}^{2} \quad \text { and } \quad a_{y}=0
$$

$$
\begin{aligned}
& v=v_{0}+a t \\
& v=\left(v_{x 0}+a_{x} \mathrm{t}\right) \mathrm{i}+\left(v_{y 0}+a_{y} \mathrm{t}\right) \mathrm{j} \\
& v=(20+4 t) i+(-15+0 t) j \\
& v=(20+4 t) i-15 j
\end{aligned}
$$

Notice that the x component of velocity increases in time while the y component remains .
B)

$$
\begin{aligned}
& v=(20+4 t) i-15 j \\
& v=(20+4 \times 5) i-15 j=(40 i-15 j) \mathrm{mls} \\
& \theta=\tan ^{-1}\left(\frac{-15}{40}\right)=-21^{\circ}
\end{aligned}
$$

The negative sign for the angle θ indicates that the velocity vector is directed at angle of 21° below the positive x axes.

